

Drag Prediction Workshop

PARTICIPANT INFORMATION

The Metacomp Tech. team

represented by:

Uriel Goldberg

e-mail: ucg@metacomptech.com

Phone: (818)735-4883

Metacomp Technologies, Inc.

28632B Roadside Drive, # **255**

Agoura Hills, CA 91301-3309

CFD++ Solver Information

- Basic Algorithm: finite volume cell-based mixedelement unstructured
- Spatial Discretization: multi-dimensional TVD (inviscid terms), non-decoupling non-limited face polynomials (viscous terms)
- Time Integration: point implicit with multi-grid relaxation (for steady state)
- Turbulence Model used: wall-distance-free realizable k-

Required Cases

CASE 1:

Hexahedral Mesh

Single Point Grid Sensitivity Study

M=0.75, Re=3 M, C_L=0.5

W+B+P+N:

Coarse Mesh: 4.8M

Medium Mesh: 8.5 M

Fine Mesh: 12.8 M

W+B:

Coarse Mesh: 5.5 M

Medium Mesh: 7.4 M

Fine Mesh: 9.6 M

CASE 2:

Drag Polars (W+B & W+B+P+N)

M=0.75, Re=3 M, ☐ (deg.) =

-3, -2, -1.5, -1, 0, 1, 1.5

Mesh Information for Case 2:

Field Cells: 7.4 M / 8.5 M

(WB/WBPN)

BL 1st Cell Size: 1.5-2.0E-6

m (y+<1, solve-to-wall)

BL Growth Rate: 1.23–1.28

BL Cells: ~20

Solution Information

Computer Platform: PIV Xeon 2.4 GHz

Number of Processors: 12

Run Time CPU: 144-160 Hrs.

Run Time Wall-Clock: 12-13 Hrs. (6-8 Hrs. for restarts)

Memory Requirements: ~18 GB

Forces converged in less than 400 time steps

Inflow turbulence levels:

- **Turbulence intensity: T'= 0.002 (from AGARD-AR-303)**
- Turbulence length-scale: = 0.6 mm (assumed)

Flow was allowed to transition naturally over the wing and fuselage.

Solution Information

Realizable (to the hilt) k
closure

Positivity of Reynolds normal stresses:

Schwartz inequality: _____

 $\Box_{t} \quad \frac{2k}{3|S}$

Time- and velocity-scale realizability:

Topography-parameter-free formulation

Sensitizing to non-equilibrium flow

Extra source term in [] equation:

Increases in non-equilibrium near-wall regions, thereby reducing eddy-viscosity. This improves prediction of backflows for example.

Forces

Forces

AIAA Drag Prediction Workshop II DLR-F6, Case 2: M=0.75, Re_c=3x10^6

Forces

Cp Plots

AIAA Drag Prediction Workshop II DLR-F6 W-B-P-N, alpha=1.0 deg., M=0.75, Re=3E6

AIAA Drag Prediction Workshop II DLR-F6 W-B-P-N, alpha=1.0 deg., M=0.75, Re=3E6

AIAA Drag Prediction Workshop II

AIAA Drag Prediction Workshop II

Cp Plots

Contour Plots

Contour Plots

Separation bubble (courtesy:

Courtesy: CEI

CFD++ Convergence

Conclusions

- CFD++ took less than 400 steps to converge forces & moments
- Fully turbulent computations with natural transition at L.E. regions
- Max. Cd deviation: 28 counts (WBPN), 24 counts (WB) at []=1.5 deg. (18 & 14 at 0 deg.)
- Cd deviation is due to pressure drag
- Good polar predictions for both configurations

Summary

Together these elements contribute to the overall effectiveness of CFD++